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Abstract

This paper constitutes the second part of a study of interface cracks with contact zones in thermopiezoelectrical
bimaterials, and it is concerned with the case of an electrically impermeable interface crack. The principal physical
peculiarity of this case in comparison with an impermeable interface crack is connected with the dependencies of the
contact zone length and the fracture mechanical parameters on the prescribed electrical flux, and in a mathematical
sense the main peculiarity is concerned with the reduction of the problem in question to the joint solution of inhomo-
geneous combined Dirichlet-Riemann and Hilbert boundary value problems. The exact analytical solutions of the
mentioned problems have been found for an arbitrary contact zone length, and the required thermal, mechanical and
electrical characteristics at the interface as well as the associated fracture mechanical parameters at the corresponding
crack tips are presented. The transcendental equations for the determination of the real contact zone length have been
obtained for a general case and for a small contact zone length in an especially simple form. Using the admissible
directions of the heat and the electrical fluxes defined in this paper as well, the dependencies of the real contact zone
length and the associated fracture and electrical intensity factors on the intensities of the thermal and electrical fluxes
are presented in tables and associated diagrams.
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1. Introduction

The investigation of an electrically permeable interface crack with a contact zone in a thermopiezo-
electric bimaterial has been performed in Part 1 of this paper. It has been particularly shown that an
electrical flux does not influence the fracture mechanical parameters in this case. Another limiting case of
the electrical boundary conditions at the interface crack faces is based upon an assumption that the in-
terface crack is completely impermeable for an electrical flux. In this case the physical situation at the crack
region is principally different from the case of an electrically permeable interface crack that leads to the
appearance of new essential peculiarities in the associated mathematical problem. Therefore, this type of
electrical conditions at the interface crack surfaces values for a special consideration and it presents the
subject of this part of the paper.

The applicability of simplified electric boundary conditions at the crack faces called the essential at-
tention in the literature concerning the existence of cracks in a homogeneous piezoelectric material. In the
references by Dunn and Taya (1993), Sosa and Khutoryansky (1996), Kogan et al. (1996), Zhang et al.
(1998), Gao and Fan (1999) a slit crack has been considered as a limiting case of an elliptical hole or an
inclusion and the exact electrical field in the mentioned hole or inclusion has been taken into account. By
use of these solutions the authors arrived at the conclusion that the assumption of a permeable crack is
generally more realistic than that of an impermeable crack, but in the absence of an electrical loading the
J-integral values for an electrically impermeable slit crack are the same as for the case of a permeable crack.
To the authors knowledge a similar investigation for an interface crack has not been presented in the lite-
rature yet, and therefore the validity of certain simplified electrical conditions at the crack faces has not
been completely clarified concerning an interface crack. At present two simplified cases of the boundary
conditions at the interface crack faces are actively used, i.e. the electrically impermeable crack and the
electrically permeable crack, respectively, and in our opinion the first case has been more extensively used in
the literature than the second one (Suo et al., 1992; Beom and Atluri, 1996; Shen and Kuang, 1998; Qin and
Mai, 1999). Therefore, in this part of the paper the attention is focused upon an electrically impermeable
interface crack mostly, regarding a comparison with an electrically permeable one studied in Part 1.

Concerning the investigation of an electrically impermeable interface crack in a thermomechanically
loaded piezoelectric bimaterial the papers by Shen and Kuang (1998) and Qin and Mai (1999) should be
mentioned. In the first of these papers the classical (“open’ crack) model has been used while a thermally
and electrically impermeable contact zone of an interface crack has been considered by Qin and Mai (1999)
where the method of singular integral equations was applied. An electro-mechanically loaded electrically
impermeable interface crack having a contact zone in a piezoelectric bimaterial has been analytically
studied by Herrmann et al. (2001).

In the present study an electrically impermeable interface crack with a contact zone in a piezoelectric
bimaterial under the action of a mechanical loading as well as thermal and electrical fluxes is considered. An
exact analytical solution of the problem has been obtained and the particular cases related to the classical
interface crack model and the contact zone models are considered.

2. Admissible values of heat and electrical fluxes

Ahead of the formulation and consideration of the main problem an auxiliary problem concerning a
possible transition from a perfect thermo-electrical contact of two piezoelectric bodies to their thermal and
electrical separation should be considered. For this purpose the same problem as in Section 5 of Part 1 of
this paper should be taken into account where we assume now that the thermal insulator located in the
region |x;| < a of the interface has the properties of the electrical insulation as well. Assuming that the part
of the interface |x;| > a is mechanically frictionless, and in addition it is in a perfect thermal and electrical
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contact, the interface conditions for the perturbed thermal and the associated electromechanical problems
can be presented in the form

for |x1|<a: g5 = qo, ag)(xl,O) =0, 0'(3';’) (x1,0) =0, ng) (x1,0) =0,

1
for [xi[>a:[T] =0, [g3] =0, [u3(x1,0)] =0, [p(x1,0)] =0, W

Gg’? (x1,0) =0, J[033(x1,0)] =0, [Ds(x1,0)] =0. (2)

The designations of this part of the paper mostly coincide with those of Part 1. It is assumed by means of
the conditions (1), (2) that in spite of the compressive load ogg") = ¢ (¢ < 0) at infinity the thermal and the
electrical fluxes initiate an opening of the zone |x;| < @ of a thermoelectrical insulation, i.e. they produce the
appearance of an interface crack in this zone. The possibility of such a formulation is discussed in this
section.

By using the method developed in Section 5 of Part 1 the presentations (44) of Part 1 can be found

S(x1) =¥ (x1) — ¥ (x1), (3a)
P(xl) = Q‘I’+(X1) — G\P_(Xl) — 69/+(X1) +E9/7(x1), (3b)
where S = [ag), W], (@), P = [[u]], 0'(313>,D<31)]T and ¥(z), Q and e are the same vectors as in Part 1 and
0(z) = ;qTO\/zz — a2, 4)
0

It follows from the relation (3a) and the Eq. ag? (x1,0) = 0 for |x;| < a that the function ¥(z) is analytic
in the whole plane and because of the conditions at infinity ¥(z) = C; holds true. The value C; is an
arbitrary constant which can be chosen to be zero due to an appropriate prescription of the stresses
o\ = 6> at infinity.

Introducing the following matrix and vectors:

On On e ¥, (z)
% {Qn QsJ’ . {63 }’ o(2) { V3(z) |’ )
the boundary conditions (1,), (1;) lead to the following matrix Hilbert problem:
W (x0) + ¥y () = @ el0 (1) — 0 (x)] for u|<a (6)

with the following conditions at infinity:

n).. ~0507'{ 7} @

By use of the formula (4) Eq. (6) can be rewritten in the form
Vi) + ¥ () = 2 0 e[ —a* for x| <a (8)
0

and the solution of this equation can be presented according to Muskhelishvili (1977) as follows:

iq0 1 /“ £ —a? a, +az
Yo(z) =——0Q, e dr+ , 9
0(?) ko % 0271:i\/z2 —a?Ja 2z vz —a? ©)
where a; = {Z“ } are arbitrary vectorial coefficients. Evaluating the integral in (9) and satisfying the
2

condition at infinity (7) leads to the following solution of the problem (7), (8)
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qo€o 2az 3.2 4 o z
ne =30 4 (2 vEmani ) {0 (10)

By use of the formulas (3) the expressions for the stress and the electrical displacement as well as for the
derivatives of the mechanical displacement and electrical potential jumps can be written as follows:

(1)
033 (x1,0) | _ qoeo 2ax, [ 2 _ apaXL 4 {‘7} X1
=27 = 4+ ./x>—aIn + —— forx; >a, 11a
{D(al)(m,()) ko xt —a? : X1 +a d) /3 l (11a)

—_ 42
1 a

[ (x1)] C]oeo 2ax, S S a-x - X1
— | - _emdTN ‘ .
L) =ied e Ve e v | Prl<a

(11b)

The formulas (11) are valid for any values of o, ¢y and d, respectively, and it can be clearly seen that all
functions defined by these formulas possess a square root singularity at the points x; = +a. However, as it
will be shown later the most important situation concerning the investigation of the contact zone model for
a thermo- and an electro-impermeable interface crack is related to the case when the stress o (x1, 0) is non-
singular at the points x; = +a. It follows from the formula (11a) that such a situation can take place if

_ 2aexqo
o= _ (12)

and the expressions for agg) (x1,0) and [u}(x;)] attain the following form:

1 €2qo x| —a
653)(x1,0):7%\/;%;721nx1+a for x; > a, (13)
2aq0 X1 qo a— X
; = . 2 _
[t (x1)] = le< o T d) T h (Ques + Ques)y/a® — xF fln— —, fornf<a  (14)

where Q = —iQ, ' In the formula (13) there is the single term connected with the logarithm, but in the
formula (14) the leading term is connected with the square root singularity. Therefore, ogg) (x1,0) and
[u(x1)] are negative in the vicinity of the point x; = a (whereas [u3(x1)] is positive) if the following in-
equalities are valid:

2aq

d ) <0. 15
n%@+) (15)

exqo = 0, 912(

It is worth to note that the inequality (15;) and Eq. (12) agree with the associated relations for an elec-
trically permeable crack presented in Part 1. However, in (15;) we admit the possibility e,qo = 0 because in
this case go = 0, ¢ = 0 hold true, but d can differ from 0 and the bimaterial remains electrically loaded. The
relations (12) and (15) define the values of ¢y, ¢ and d for which a transition from a perfect thermoelectrical
contact of two piezoelectric bodies to their thermal and electrical separation is possible. In spite of a
particular problem dealt with, nevertheless the inequality (15) can be considered as a general condition
because the relations (13), (14) define the asymptotic behaviour of 03; (xl, 0) and [u}(x))], respectively, at the
transition point x; = a.
In a particular case when the left side of the inequality (15;) becomes equal to zero it follows:

P 2aesqy (16)

TCko

and the second term of the formula (14) becomes the leading one. In this case for negative values of

ag? (x1,0) and [u4(x,)] in the vicinity of the point x; = a the following inequalities should be satisfied:
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exqo >0,  qo(Qiez + Qze3) < 0. (17)

The numerical analysis showed that for the considered bimaterials the signs of e, and (e, + Q2e3)
appear to be opposite. Therefore, in this particular case even the direction of the heat flux is defined by the
inequality (17); which agrees with the associated conclusion for an electrically permeable crack.
Introducing the following stress intensity factors:
ki = lim +/27(x; — a)a(;z) (x1,0), ky= lim +/27(x; — a)Dgl)(xl,O) (18)

x1—a+0 x1—a+0

and using the formulas (11) one obtains

ki = 2av/maqoey [ (nko), kgem) = gy/na, (19a)
ks = 2av/mages(tho), k™ = dv/na, (19b)

where the superscripts (em) indicate the SIFs related to a pure electromechanical loading. By use of Eqgs.
(11) the asymptotic formulas for agg) (x1,0) and [u/;(x;)] in the vicinity of the point x; = a can be presented in
the form

fey + ko™ ki i—a, xi—a
(1) 0 — 1 1 1 1 1 1 20
033 (x17 )|x1~>a+() 27‘5(){1 — a) + a ' n 24 ) ( )
1 1 Jja—x1, a—x
' = 1Q (ky + ™Y 4+ Qs (ha + K™Y (Q11ky + Qpoks) — ' L
[”3(351)}‘;(1%,170 [Qulkr +57) + Qualks + k)] 2n(a —x1) (Quki + Qi 4)a 2n n 2a
(21)

Applying to the formulas (20) and (21) the same analysis as it was done concerning the formulas (11a) and
pplying y g

(} ll?) Egs. (12), (16) and the inequalities (15), (17) can easily be written in terms of the SIFs 4y, k4 and kiem,
k™.
It is worth to note that the matrix @, and the vector e needed for applying the obtained formulas can be
presented in terms of the matrix G and the vector h as follows:

_hl/Gll
Gy — GuGi3 /Gy Gas — G31 GG
0= | Go_GaGulGn Ga— GGy €= O /Gu b . @)
’ —h1Gu /G + ha

3. Formulation of the problem and the derivation of the basic relations

The statement of the problem and the initial stage of the solution are rather similar to the case of an
electrically permeable crack and therefore many details in this part will be omitted for conciseness reasons.
Consider an interface crack situated in the region ¢ <x; < b, x3 = 0 between two different piezoelectric
semi-infinite spaces x; > 0 and x; < 0 with thermomechanical properties defined by the matrices E£}1)</a D

ij
B} and EfJZ}(,, )V,(.f) , B, respectively. The half-spaces are loaded at infinity with uniform stresses ag'g’) =0,
(m)
3

o\” = rand ¢\ = 6 as well as with uniform electric displacements D{") = d, D"} = D> which satisfy the
continuity conditions at the interface. Besides, a uniform temperature flux g, in the x;-direction is imposed
at infinity. As in the Part 1 of this paper it is assumed that the crack surfaces are traction-free for
Xy € [¢,a] = L, whilst they are in frictionless contact for x; € (a,b) = L,, and the position of the point

x1 = a is arbitrarily chosen for the time being. The open part of the crack is thermally and electrically
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impermeable, whereas ideal thermoelectric contact takes place on the remaining part of the interface, see
Fig. 2 in Part I. The interface conditions associated with such a formulation for the perturbed thermal state
can be written as follows:

[T]=0, lg:] =0 forx € (—00,00)\ (c,a), (23a)
q; = —qo forx; € Ly, (23b)
[V(x1,0)] =0, [t(x;,0)]=0 forx €L, (24a)
[tV (x;,00 =0 forx €L, (24b)

[”3(x170)] =0, [(p(xl,O)] =0, O'Y;)(xl,()) =0, [033()(1,0)] =0,

[D3(X1,0)] =0 for X| € L2. (24C)

For the considered problem the thermal solution is the same as in Part 1 and it can be presented in the
form

0(2) :;"7(;[ z—0)(—a) —2]7 (25)

and for the thermoelectromechanical solution the presentations (22)—(26) of Part 1 are valid. The most
important part of this presentation can be rewritten as follows:

V()] = W (xrr) = W (), (26)

1V (x1,0) = GW* (x1) = GW™ (x1) — glx1), (27)

where V = [uy, u,, u3, (p}T, t =[031,0%, 033,D3]T, and W(z) = [W(2), W5(z), W5(z), Wy(z)] is a vector-function
analytic in the whole plane with a cut along the crack region (c,b) with g(x;) = h6* (x;) — h0' (x,). Fur-
thermore, thermopiezoelectric materials of the symmetry class 6 mm (Parton and Kudryavtsev, 1988) poled
in the direction x3; will be considered, and the attention will be focused upon the plane strain problem with
the bimaterial matrix G and the vector h presented in the form (27) of Part 1.

Further, the transformation of the Eqgs. (26), (27) which for a case of electromechanical loading are
written in details in the paper by Herrmann et al. (2001) will be performed. Introducing a one row matrix
S =[S}, S5, 53] and considering a product St'V)(x,, 0) the following relations can be obtained using Eqs. (26),
(27)

0213) (x1,0) + m,»4D(31)(x1, 0) + imﬂa%) (x1,0) = 7 (x1) + 7,8 (x1) — go;(x1), (28)

nji[uy (en)] 4 i [u (e1)] + i’ (x1)] = F(x) — £ (x1), (29)
where

Fy(z) = npWi(z) + i[njsWi(z) + nuWa(z)], (30)
goi(x1) = g3(x1) + imjugi(x1) + muga(x1), mu = Su, my = —iSn, ny = Yy, njy = —i¥;3, njy = —Yy and my,

n; (I =1,3,4) are real. Moreover Y ; = §;G and 7, S/T = [Si1,85,54] (j = 1,3,4) are the eigenvalues and
eigenvectors of the matrix (yG” + 6T), respectively. The roots of the equation det(yG” + 6T) =0 can be
presented in the form

1406 ,
Vlzmy V3:V117 7a=1, (31)
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where

2 2 )
52 — 814833 1+ 813844 gz14g13g34 (32)
gll(g33g44 - 834)

The numerical analysis shows that for one group of piezoelectric bimaterials the inequality
>0 (33)
holds true, while for another group this inequality is not valid. Thus, attention is paid in the following to
those bimaterials satisfying the inequality (33), and the properties of the coefficients m;,;, n;, reported above
are related to these materials.

Because of the existing linearity the formulated problem can be considered separately for an electro-
mechanical and a thermal loading, respectively. Taking into account that the problem in question under a
pure electromechanical loading has been already studied in detail by Herrmann et al. (2001), thermal
loading only will be further considered assuming ¢ =1t =063, =0 and d = DY = 0 for the time being.
Moreover, taking into account that all fields called by the perturbed thermal state disappear for large z, the
conditions at infinity for the functions F;(z) by using of Eq. (28) can be written as follows:

Fi(z)=0 forz— oc. (34)

The obtained relations (28), (29) and (34) by considering the properties of the coefficients m;; and n;; are
rather convenient for the formulation and the analysis of the problems of linear relationship for an elec-
trically impermeable interface crack with a contact zone.

4. Formulation and solution of the problems of linear relationship
Satisfying the boundary conditions (24b) by means of Eq. (28) gives
F(x1) +9,F (x1) = goj(x1)  forx; € Ly (j=1,3,4). (35)

Using the fact that my; = 0, ny; = 0 and satisfying the first three of the boundary conditions (24¢) by means
of Egs. (28), (29) leads to the following relations:

ImF}f(xl) = ﬁh’n{go/{()ﬁ)} for x; € L, (k = 1,3), (363)
Ff (1) = Fy (1) = 0, (36b)

Taking into account that the problem (35), (36a) for j = k£ = 3 can be obtained from the same problem for
j =k =1, in future this problem will be considered for j = 1 and £ = | only. Using formula (25) leads to
the following form of Egs. (35), (36a) for j =k =1

) + 0 (1) = gy () for xi € (c,a), (37)
0

ImF(x;) = %(pz(xl) for x| € (a,b), (38)

0

where

QDI()CI) = im11015€1 + 1(9'; —+ I’}’l1404) (xl — C)()Cl — CZ)7 (39)

o my 0 7.
oam) =1t |5 = VT =0 ) (40)
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and X; = x; — ¢, co = (¢ + a)/2. It is worth to remind as well that the values 6, 65, 0, define the vector h
which has been introduced by the formula (27) of Part 1. The relations (37) and (38) represent an inhomo-
geneous combined Dirichlet-Riemann boundary value problem for the sectionally holomorphic function
Fi(z) which was considered in detail in Part 1. The Eq. (34) for j = 1 can be used as a condition at infinity
for this problem.

Using Eq. (35) for j = 4 as well as Egs. (25) and (36b) one arrives at a Hilbert problem for the function
Fy(z) which is analytical in the whole plane with a cut along L; only

Ff () +Fy () = Coslo) - for xi € (c,a), (41)
where
@3()&) = 1(03 + m4494) (x1 — c)(xl — a). (41b)

Eq. (34) for j = 4 can be used as a condition at infinity for this problem.

The inhomogeneous combined Dirichlet-Riemann problem is principally the same as the associated
problem of Part 1. The differences are due to the coefficients of the functions (39), (40) and the meaning of
the function Fj(z). Therefore, the solution of this problem will be presented here only. Thus, the function
Fi(z) has the following form:

Fi(2) = qoky 'RX1(2) + qoky ' Xa(2) [01(2) + 2 (2)], (42)

where

b J—
R :@/ (1 — )\ [ —cosh gy(1)de + Ry (43a)

2 2
Ro— |Bra (b—a) ), bra, (43b)
4 8 2
L[ e (n)de
o(5) =54 / X0 —2) (44a)

wy(z) =T +’73 Y(z) / b(t—c),/;)__‘;cosh 0o(1)dt +i[di 22 + doz + ds — Y (2)(di (z + co) + db)]

’71/ (t=e)tza)=(t=)=a) Gop o (e (44b)

t—z

with Y(z) =+\/(z—a)(z—=b), di = —(n, +n3) cos B, dr = (1, + n3) [, sin f + (a + ¢) cos f3],
2 2
d3=(m+173){(%—a6) cosp 75— sinp s U cosp (45)

where 1, = —m10,/(y, + 1), 53 = 03 + m404/(y, — 1). All remaining values used in the formulas (42)—(45)
are the same as in Part 1.

The Hilbert problem (41) is principally very similar to the problem (7), (8) considered above. Therefore,
dropping the details of the solution the function Fy(z) satisfying the required condition at infinity reads as
following:
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H&%=£%ﬂ&+mﬂﬁ)—7£Ei¥55+\az—d@—@h€:j. (46)

Using the solutions (42), (46) and formula (28) the normal stress and the electrical displacement at the
interface can be found from the following system:

o3y (x1,0) + muDS (x;,0) = Re{F (x)) + 9,1 (x1) — qoky '@y (x1)}, (47a)

o8y (x1,0) + myDY (x1,0) = F} (x1) + Fy (x1) — qoky ' @3(x1) (47b)
and the shear stress is defined by the formula

oy (x1,0) = m Im{F" (x1) + 7, F (x1) — qoky 'y (x1) }. (48)

The derivatives of the normal displacement and the electrical potential jumps at the interface can be
found in a similar manner by means of the formulas (29), (42) and (46) from the following system:

nisu (xn)] + il (v1)] = Im{F" (x1) — Fy (x1)}, (49a)

naslus (x1)] + naa@'(x1)] = Fy' (x1) = Fy (x1) (49b)
and the derivative of the transversal displacement jump reads as follows:

[, ()] = i {F (1) = F () - (50)

By means of the Egs. (47), (50) all required components of the stress-strain state can be found at any point
of the material interface.

Nevertheless, in spite of the fact that the obtained solution is derived on an exact analytical way there are
still remaining integrals in the formulas (43a) and (44). These integrals can be evaluated numerically, but for
a very small relative contact zone length A = (b — @) /(b — ¢) such an evaluation can be connected with some
difficulties. Fortunately for a small 4 the solution (42)—(44) can be essentially simplified and an asymptotic
expression for Fi(z) can be obtained. Presenting w;(z) (44a) in the form

o1(2) = eV /a Pi(1)/(t—c)(t—a) elbo)] 4y (51)

T 2mi t—x

L. . . t . .
and taking into account that for a small 1 an approximation f§ — ¢(¢) ~ ¢ln (t a) is valid (Herrmann and

Loboda, 2001) the integral (51) can be approximately evaluated and presenteg in the form

601(2) ~ (I)l (Z)

. z . z—c)(z—a
=1ie ﬁfh{ —er [d12 +d122+d13]} +1e ﬁ'ls{ —#())Jr [do12” + d222+d23]}»

(52)

where X (z) and d;; are the same as in the formulas (57), (58) of Part 1. Further by neglecting the integrals in
the formulas (43a) and (44b) the following formula for F;(z) ~ F,(z) can be obtained

Fi(2) = qoky 'RoXi (2) + qoky ' Xa(2)[@1(2) + @1 (2)], (53a)
where
5 (2) = 0y(2) = i[d\22 + doz + ds — Y(2)(dy (z + ¢o) + db)]. (53b)

The stresses and the electrical displacement as well as the derivatives of the normal displacement and the
electrical potential jumps at the interface can be found from the Egs. (47)~(50) in which F*(x;) instead of
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F{(x;) should be taken. All formulas in this case appear to be extremely simple and according to the
numerical verification they can be used not only for very small but also for moderate values of .

5. Behavior of the solution at singular points

As can be seen from the results of the previous section the solution for an electrically impermeable crack
essentially differs from a permeable one, first of all because of the appearance of new components connected
with the function Fy(z). Nevertheless, in this case also the normal stress o (x;,0) remains limited for
x; — b+ 0 and the main stress and electrical displacement intensity factors (IFs) can be defined as follows:

k= lim /2n(x; — a)agg)(th), ky = lim /2n(x; — b)a(lg)(th),

x1—a+0 x1—b+0

(54)
ky = limO V2a(x; — @)D (x1,0).
xp—a+ -
Using the exact formulas (47), (48) leads to the following expressions for the IFs:
2 la—c

ky + mysky Zz—z mlo, ky + magky :%z by (a—c)(03 + mas0y), (55)

b = —(149,)-20_ [*"x (56)

2 — ba muko ] )
where

Iy = /ca \/E{ — my01tsin @*(¢) + (05 + mia04)\/(t — ¢)(a — 1) cos (P*(t)} dr

_ 2,71\/%/ [(t —c)— 1y /i — j sinh ¢, (¢) dr. (57)

It is obvious that the IFs k; and k4 can be found from the system (55), and the quantity /, depends on
integrals which can be obtained by a numerical calculation.

An evaluation of the Egs. (49), (50) for x; — @ — 0 and x; — » — 0, respectively, leads to the following
asymptotic expressions:

, , o ki + muk
nisfus (x1)] + mal@' (x0)]l,, a0 = — ;\/ﬁ’ (58a)
— X1
, , ki + mask
nas[uy(x1)] + naslo (xl)]|x1—>a—0 = \/ﬁv (58b)
— X1
/ Onk, (59)

[u4) (x1 )]|xl*>b*0 =- m;

where o = (y, + 1)2/4721 and @y = —2my;/n; (1 +y,). The solution of the system (58) gives the following
result:
1

[13(x1,0)]ly, a0 = = —m==—=—=(Onk1 + Or4ks), (60a)
2n(a — x;
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, 1
(@' (x1,0)]],, 00 = ————=(Ounki + Ouky), (60b)
2n(a — x1)

where
0 = (n44 a/yy — ”14)/An; Oy = (m14n44\/ a/y — m44n14) /A,,,
04 = (n13 — N43/ 06/“/1)/4:% Oy = (’71447113 — M4n43/ a/Vl)/An

and A, = nj3ng — ng3nyy. It is worth to note that that the asymptotic expressions (59), (60) completely
coincide with the associated expressions for a pure mechanical loading obtained by Herrmann et al. (2001).
Therefore, the formulas for the energy release rates (ERRs) defined for the points x; = a and x; = b, res-
pectively, in the just mentioned paper will be the same as well and they read as follows:

(60c)

Gﬁ = [@11](12 + @44/(2 —+ (@14 + @41)]61/(4]/4, (6121)

G5 = Onkl /4. (61b)

Therefore, by existence of a small / the use of the functions F;*(x,) instead of F*(x,) in the formulas
(47a), (48) gives the following approximate expressions for the IFs:

Va(ky + misks) — imy ks & \/&(121 + m14l€4) —impky = %\/&Tl (4), (62a)
0
where
A/mlyy - \2
7)) = —1—~Y—Lelf[(1 + 2i¢ + — 5] 62b
1(4) 32 [( )" (ny +n3) — 3] ( )

The assumption of a small 4 in Eq. (55), and by setting (a — ¢) = / leads by a combination of this equation
with Eq. (62a) to the following expressions for the IFs:

];1 = (WI44 — m14)71 i—Z{mMRC[Tl (;u)] — m14T2}, (633)
o = fZ‘)r‘n/& Im[7; (1)), (63b)
Foy = (mag — myg) ™! %Z{ —Re[T1()] + B}, (63c)

where Th = I¥%(03 + myy04)/V/27. It is worth to note that for small values of 4 the formulas (59), (60)
defining the behavior of the derivatives of the displacements and the electrical potential jumps at the
singular points of the material interface remain valid by using k; instead of k; (/ = 1,2, 4) in their right-hand
sides.

For a pure electromechanical loading according to Herrmann et al. (2001) the IFs for a small 4 are
defined by the following relations:

- - - 1.
Va(E™ 4 mygk™) — imk™ = /%e"’(l + 2ie) (0 + myqd — imy; 1), (64a)

7 (em 7 (em l
EE™ gkl = \/%(o + mad) (64b)
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and for a combination of electromechanical and thermal loading they must be found as a sum of the
correspondent IFs (63), (64). For a general case of loading and the essential values of A the IFs can be found
from the formulas (55), (56) for a thermal loading and from the associated formulas of the paper by
Herrmann et al. (2001) for an electromechanical loading. However, we pay less attention to this case
because mostly the contact zone length is extremely small and the expressions (63), (64) appear to be the
most important for the analysis of the most real situations.

6. Contact zone models

The solution of the interface crack problem obtained in the previous chapter is mathematically correct
for any position of the point x; = a. But for an arbitrary value of a this solution is not always physically
admissible, and therefore, the correspondent interface crack model has been called by Herrmann et al.
(2001) an artificial contact zone model (ACZM). The necessary additional conditions required for the
physical correctness of the ACZM coincide with the associated conditions of Part 1, and they read as
follows:

o (x1,0) <0 forx; € Ly, [uz(x1,0)] =0 forx, €L,. (65)

An analytical analysis and numerical verifications show that these inequalities hold true if « is taken
from the segment [a;, ay] providing a; < a,, where
a=b—A, ag=b-—A4l, a=b- 1l (66)
and 4, is the maximum root taken from the interval (0, 1) of the equation
ky + k™ =0 (67)

and 4, is the similar root of the equation

va = xi{luy(xr, 0)] + [ (x1,0)] ™} = 0. (68)

For arbitrary values of 1; and 4, these equations can be analytically formulated by means of the formulas
(55), (60a) and the associated formulas for a pure electromechanical loading (Herrmann et al., 2001),
whereas for small values of 4; and 4, Egs. (67) and (68) by use of (60a), (63a), (64a), (64b) can be rewritten
into the following relations, respectively

Re{e(1 4 2ie)[1l + myd /o — imyik — pi(ms + 2iems)]} = Vomamy, 13, (69a)
Re{e” (1 + 2ie)[1 + myd /o — imy 1k — pi(my + 2iemy)]} = \/yimany 13, (69b)
where
T 4¢? 2 +4¢
k:;a ms = m —mmza my = m —mmz,
—my; 0, 03 + my404 d 03 + mas0y4

my s =1 —|—m44;—|— Iqo (70)

= — T m =————-
Okodo(1+791)" 77 Dkoda(1 —7)
The non-dimensional parameter p = ((y, + 1)/4)go9,1/0 has the same meaning as in Part 1, and the
parameters 7 and ¢, are also the same as in Part 1.
It can be seen that the left-hand sides of Egs. (69) are very similar to the associated equation of the
electrically permeable crack, but the right hand sides are not trivial as in the case of the electrically per-

noky
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meable crack, and moreover, they differ from each other. Recollecting that = ¢ln[(l —v1 — 1) x
(I++v1 - /1)71] while the other components of Egs. (69) are independent of 4, the exact analytical solutions
of these equations can be presented in the following form:

Ji~ Ji = 4exp(gi/e), (71a)

where

g=(-1)" [sin1 (—Xl +A28X2> —sin”"! (Ci)} + 7n,

d
n=1 +m14g+ 2epma,  yp = kmy + pms, (71b)

m n .
Cl :\/& “ x3» 4/2: V71 14 X35 A2:(1+482)<X%+X§)7 1= 172
Amyy Angy

and n should be taken to choose the maximum roots of the Egs. (69) from the interval (0, 1). The formulas
(71) are appropriate for small values of /; (approximately for 4; < 0.01). However, if the values of 4, or 4,
are of essential magnitude then the numerical solutions of Eq. (67) or Eq. (68), respectively, should be
found and the precise magnitudes of /; or 4, have to be calculated.

The situation arising here is not traditionally for the determination of the real contact zone length.
Usually the real position of the point x; = « is uniquely defined by the inequalities (65), and the contact
zone model (CZM) in the Comninou (1977) sense takes place. However, in the reported case a set of
positions a € [ay, a,] provided (a; < ay) holds true satisfy the inequalities (65). In other terms this set can be
defined as follows:

Q,=laza Na<a). (72)

The meaning of the expression (72) can be explained in the following way. For a certain bimaterial and an
associated loading the first inequality (65) is valid for any position of the point x; = a satisfying the in-
equality a > a; and the second inequality (65) is valid for any a < a,. Therefore, the set 2, is formed as the
intersection of the solutions of the mentioned inequalities.

The appearance of the set , instead of a unique solution which usually takes place is connected first of
all with the action of the electrical flux d. Therefore, it is not surprising that the size of the set 2, essentially
depends on the quantity d. As it will be demonstrated later for the thermoelectromechanical case, and it was
already shown by Herrmann et al. (2001) for a pure electromechanical loading, the set , is usually not
empty for d=0, but ¢, and a, differ very slightly. The increase of d leads to a decrease of a; and an increase
of ay, respectively, i.e. their difference increases. On the other hand a decrease of d leads to a decrease of
(a; — ay) till to the point when a, = a;. In this case 2, = a» = a; holds true, and the unique solution of (65)
exists. Further decreasing of d gives Q, = ), and the contact zone model defined by the boundary condi-
tions (24) does not exist.

The most characteristic situation is connected with Q, # (), and it is clear that for any of such cases a
unique contact zone defined by a real position of the point x; = a should exist. In the paper by Herrmann
et al. (2001) a position in question has been defined by means of the theorem of the minimum potential
energy (Sokolnikoff, 1956). Taking into account that for a thermal loading the signs of ©,; (i,j = 1,4)
remain the same as for a pure electromechanical loading the conclusion of Herrmann et al. (2001) remains
valid, and in the considered case, and therefore for a thermoelectromechanical loading a real position of the
point x| = a coincides with a, provided Q, # 0 holds true.
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7. The classical model

For the sake of completeness the main results for the classical interface crack model (b = a, L, = 0) will
be presented here. In this case a perturbed thermal state is defined by Eqgs. (37), (41) with the condition at
infinity (34) providing the absence of an electromechanical loading. The solution (46) of the problem (34),
(41) remains valid here while the solution of the Hilbert problem (34), (37) obtained in the same way as in
Section 6 of Part 1 can be written in the form

F(2) :%{Z—X(z)[aﬁlzz +dlzz+d13]} +W{ z—o)(z—a)
— X(Z) [dz]Zz + dzzZ + d23]}. (73)

All required characteristics at the interface can be found by means of the Eqs. (46), (73) by using the
formulas (28), (29). Particularly for x; > a the following presentation is valid:

ogg) (x1,0) + m14D(31)(x1 ,0) + im”a(lg) (x1,0)

: - . 1+9
=16, L {xl — X(xl)[d“x% + dipx; + d13]} + (05 + m1404) 10 Al
ko kO 1 - !

X { (x1 — ¢)(x1 — a) — X (x1)[darx] + dopx) + dzz]} - Z—z%(xl)- (74)

From the Egs. (47b) and (74) the stresses and the electrical displacement at the interface can be found.
Introducing the IFs by the following formula:

(K] + I’I’l14K4) — im”Kz = (x1 — a)iigx/ 27'C(X1 — a)[agg)(xl,O) + H114D(31)(X1,O) — iml16(113>(xl,0)]x1_.a+0

(75)
and by using Eq. (74) one arrives at the following expression for the IFs:
. . Irl .
(K + misKy) —imn Ky = —i(y; + 1>@ e V[(1 + 2ie)*(n, + 13) — ). (76)

ko 42

From the last equation and Eq. (55), (by changing ki, k4 for K, K4, respectively) all IFs can be found. Using
the expressions (73), (76) and Eq. (29) for j = 1 the following asymptotic expression valid for x; — a —0
can be obtained:

) 2i 20 . —ie
mifun (e, O)] + i{misfus (1, )] + mialep (1, )]} = g [ (Kt + miaKs + imn Ko (a —x)7(77)
Combining the last formula with the following expression:
2(a—x
s (60)] a0 0]y ao = Y 22K, + gk (78)

obtained by integration of (58b) and changing &, k4 for K, K, respectively, the displacement and electrical
potential jumps at the crack tip can be found.

For the more general case of a thermoelectromechanical loading the solution obtained by Herrmann
et al. (2001) for a pure electromechanical loading should be used in addition to the just reported solution.
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8. Numerical results and discussion

The main attention in this paragraph will be devoted to the contact zone model which has never been
investigated in the past for an electrically impermeable interface crack in a thermopiezoelectric bimaterial.

For the numerical analysis the same bimaterial as in Part 1, i.e. cadmium selenium/glass has been chosen.
For this bimaterial the vector e and the matrix £ calculated in the system of physical units SI have the
following shape:

~1.38 x 10°
~743x 10711 —0.0223
= — 5 =
€= _118858;1100,7 , R —0.0181 227 x 10" ] (79)

Taking into account that e, is negative, the sign of g, according to the inequalities (15); and (17), in the
following examples will be chosen to be negative. The values of d used in the following examples are
controlled by the inequalities (15), or (17),.

In Table 1 the variation of the relative contact zone length A, and the value /,, respectively, with respect
to the intensity of the temperature flux p for two different values of the shear-normal loading coefficient k&
and d =0 have been demonstrated, and in Table 2 the normalized SIF of the shear stress

Table 1
The variation of the relative contact zone length 4, and the value 4,, respectively, with respect to p for d = 0 and for different shear-
normal loading coefficients k for the bimaterial cadmium-selenium/glass

k 0 10
—p —ln(/ll) —ln()z) —11'1(/11) —11’1(/12)
0 69.24 69.27 5.149 5.152
1 68.43 68.45 5.753 5.756
3 61.94 61.97 6.913 6.918
10 52.37 52.41 10.53 10.54
20 48.00 48.04 14.70 14.71
50 44.50 44.54 22.72 22.74
100 43.15 43.18 29.18 29.21
10° 41.83 41.86 39.97 40.01
10* 41.69 41.72 41.50 41.53
10° 41.67 41.70 41.67 41.70
Table 2

The variation of the normalized SIF (ky + k;f")) /(a+/1) with respect to p for d = 0 and for different shear-normal loading coefficients k
for the bimaterial cadmium-selenium/glass

—p k=0 k=10

0 1.23 12.6

1 1.43 12.8

3 1.84 13.1

10 3.40 14.4

20 5.71 16.3

50 12.7 22.5

100 24.5 33.6

103 2.36 x 10° 2.44 x 10?
104 2.35x% 10 2.36 x 10°

10° 2.35x 10° 2.35x 10°




4234 K. P. Herrmann, V.V. Loboda | International Journal of Solids and Structures 40 (2003) 4219-4237

(koo + kéf)m)) /(a/1) at the right crack tip for 2 = 2, has been given. It can be clearly seen that the difference
between 4; and 4, is negligible small for all values of p. Moreover, these values like the values of the shear
stresses differ very slightly from the associated values obtained in Part 1 for an electrically permeable in-
terface crack.

Further, the influence of the electrical flux d upon the fracture mechanical parameters is demonstrated.
Thereby the dimensionless parameter d* = cg?d / (egg)a) has been introduced for convenience. In Fig. 1 the
variations of the relative contact zone length 4; and the value 4, with respect to the intensity of the electrical
flux d* for k = 0 and two different intensities of the temperature flux are shown. In this graph the loga-
rithmic scale is used because the values of 4; are extremely small for the considered parameters £ and p. It
can be seen that an increase of d leads to an increase of the differences between A; and 1, which for the left
points of each pair of lines are equal to zero.

In Fig. 2 the variations of the normalized intensity factor of the electrical displacement (ks+
kfm)) / (eg? V1) at the point a = a; (X = J,) for different intensities of the temperature flux are presented.

~

[ep)
[}

- |nll —— p:O

60 \ p=0
-InA, p=-10
—0—p=-10

g ; )]
(@] [&1]
L

-2 3 8 13 18

300 1
by + £E™ 250 A P
e/ 200 / P! pa
—— p=-10
—&— p=-50
——p=-100
11 6

Fig. 2. Variation of the electrical intensity factor at the point a with respect to the intensity of the electrical flux d* for different
intensities of the heat flux.
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e ® &5o% &
(em)
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A - - —#=p=-10
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[ S———
* M ?
T L9} T T
-11 -6 -1 4 9
d*

Fig. 3. Variation of the SIF of the shear stress with respect to the intensity of the electrical flux d* for different intensities of the heat
flux.

The values of d* designated as d; for which k4 + kffm) =0 correspond to the cases when A, =/,
(2, = a; = ay) and the interface crack closes smoothly at the point x; = a;. These values d; are equal to
—-0.423, —1.40, —-5.31 and —10.19 for p equal to 0, 10, 50 and 100, respectively. A decrease of the d* value
lower then dj; leads to negative values of the IF (ks + kffm)) and as a consequence to a violation of the second
inequality from (65). In such a case the set Q, defined by formula (72) becomes empty and the contact zone
model associated with the interface conditions (24) does not exist. This situation is similar to the well-
known result concerning the possibility of a transition from a perfect thermal contact of two isotropic
bodies to their separation reported for example by Barber and Comninou (1983) and in such a case a new
thermoelectrical interface condition should be presented. However, it is worth to mention that for materials
considered in this paper and according to Herrmann et al. (2001) the value dj is usually less than zero, and
therefore for the most important case, d = 0, the interface conditions (24) are applicable.

In Fig. 3 the variations of the normalized SIF (k, + kéem>) /(a/1) for /. = ), with respect to the intensity
of the electrical flux d* for £k = 0 and the same values of p as in Fig. 2 are presented. It is obvious that the
analysed values essentially depend on p only, but their dependence on d is rather insensible. It should be
mentioned that an essential dependence of the A,-values and (k, + k;em))-values on the electrical flux d
appears for very large d*-values only. For example for p = 0, k = 0 and d* = 10°, 10%, 2 x 10* the values of
/1 are equal to 6.38 x 10713, 6.62 x 107, 0.0177, respectively, and (k, + k;em)) varies essentially as well. A
further increasing of the d*-values leads to an increase of 2; too.

9. Conclusion

An electrically impermeable interface crack with a contact zone in an infinite piezoelectrical bimaterial
under the action of a mixed-mode mechanical loading and a thermoelectrical flux has been considered.
Using the matrix-vector representations (26), (27) derived in the first part of this paper the expressions (28),
(29) for the required physical values via special sectionally holomorphic functions are found. An auxiliary
problem concerning a possible transition from a perfect thermoelectrical contact of two piezoelectric bodies
to their thermal and electrical separation has been considered, and the inequalities (15) defining the
admissible values of heat and electrical fluxes have been derived.

The main problem of this part of the paper has been reduced to appropriate inhomogeneous com-
bined Dirichlet-Riemann and Hilbert boundary value problems which have been solved exactly in the form
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(42)—(45) and (46), respectively. The expressions for the stresses, the electrical displacements and the de-
rivatives of the mechanical displacement and electrical potential jumps at the interface for any contact zone
length have been found. Furthermore, the stress and the electrical displacement intensity factors have been
determined in an analytical form which becomes especially simple for small values of the contact zone
length.

The transcendental equations for the determination of the real contact zone length were obtained and
solved for small values of the contact zone length in the form (71). The possibility of a definition of a unique
contact zone length was discussed and the conclusion following from a theorem of the minimum of the
potential energy has been presented by the root of Eq. (67).

The analytical formulas for the main electromechanical characteristics correspondent to the classical
(“open” crack) model were given as well.

The numerical results are presented for the same bimaterial cadmium selenium/glass as in Part I, and
provided the absence of an electrical loading they are rather similar to the associated results for an elec-
trically permeable crack. The influence of the electrical flux upon the contact zone length and the associated
stress and electrical intensity factors has been demonstrated for the considered bimaterial as well. It was
particularly found out that at some extent the electrical flux essentially influences the electrical intensity
factor only and its influence upon the contact zone length and the associated stress intensity factor of the
shear stresses becomes sensible for rather large values of this quantity only.
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