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Abstract

This paper constitutes the second part of a study of interface cracks with contact zones in thermopiezoelectrical

bimaterials, and it is concerned with the case of an electrically impermeable interface crack. The principal physical

peculiarity of this case in comparison with an impermeable interface crack is connected with the dependencies of the

contact zone length and the fracture mechanical parameters on the prescribed electrical flux, and in a mathematical

sense the main peculiarity is concerned with the reduction of the problem in question to the joint solution of inhomo-

geneous combined Dirichlet–Riemann and Hilbert boundary value problems. The exact analytical solutions of the

mentioned problems have been found for an arbitrary contact zone length, and the required thermal, mechanical and

electrical characteristics at the interface as well as the associated fracture mechanical parameters at the corresponding

crack tips are presented. The transcendental equations for the determination of the real contact zone length have been

obtained for a general case and for a small contact zone length in an especially simple form. Using the admissible

directions of the heat and the electrical fluxes defined in this paper as well, the dependencies of the real contact zone

length and the associated fracture and electrical intensity factors on the intensities of the thermal and electrical fluxes

are presented in tables and associated diagrams.
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1. Introduction

The investigation of an electrically permeable interface crack with a contact zone in a thermopiezo-

electric bimaterial has been performed in Part 1 of this paper. It has been particularly shown that an
electrical flux does not influence the fracture mechanical parameters in this case. Another limiting case of

the electrical boundary conditions at the interface crack faces is based upon an assumption that the in-

terface crack is completely impermeable for an electrical flux. In this case the physical situation at the crack

region is principally different from the case of an electrically permeable interface crack that leads to the

appearance of new essential peculiarities in the associated mathematical problem. Therefore, this type of

electrical conditions at the interface crack surfaces values for a special consideration and it presents the

subject of this part of the paper.

The applicability of simplified electric boundary conditions at the crack faces called the essential at-
tention in the literature concerning the existence of cracks in a homogeneous piezoelectric material. In the

references by Dunn and Taya (1993), Sosa and Khutoryansky (1996), Kogan et al. (1996), Zhang et al.

(1998), Gao and Fan (1999) a slit crack has been considered as a limiting case of an elliptical hole or an

inclusion and the exact electrical field in the mentioned hole or inclusion has been taken into account. By

use of these solutions the authors arrived at the conclusion that the assumption of a permeable crack is

generally more realistic than that of an impermeable crack, but in the absence of an electrical loading the

J -integral values for an electrically impermeable slit crack are the same as for the case of a permeable crack.
To the authors knowledge a similar investigation for an interface crack has not been presented in the lite-
rature yet, and therefore the validity of certain simplified electrical conditions at the crack faces has not

been completely clarified concerning an interface crack. At present two simplified cases of the boundary

conditions at the interface crack faces are actively used, i.e. the electrically impermeable crack and the

electrically permeable crack, respectively, and in our opinion the first case has been more extensively used in

the literature than the second one (Suo et al., 1992; Beom and Atluri, 1996; Shen and Kuang, 1998; Qin and

Mai, 1999). Therefore, in this part of the paper the attention is focused upon an electrically impermeable

interface crack mostly, regarding a comparison with an electrically permeable one studied in Part 1.

Concerning the investigation of an electrically impermeable interface crack in a thermomechanically
loaded piezoelectric bimaterial the papers by Shen and Kuang (1998) and Qin and Mai (1999) should be

mentioned. In the first of these papers the classical (‘‘open’’ crack) model has been used while a thermally

and electrically impermeable contact zone of an interface crack has been considered by Qin and Mai (1999)

where the method of singular integral equations was applied. An electro-mechanically loaded electrically

impermeable interface crack having a contact zone in a piezoelectric bimaterial has been analytically

studied by Herrmann et al. (2001).

In the present study an electrically impermeable interface crack with a contact zone in a piezoelectric

bimaterial under the action of a mechanical loading as well as thermal and electrical fluxes is considered. An
exact analytical solution of the problem has been obtained and the particular cases related to the classical

interface crack model and the contact zone models are considered.
2. Admissible values of heat and electrical fluxes

Ahead of the formulation and consideration of the main problem an auxiliary problem concerning a

possible transition from a perfect thermo-electrical contact of two piezoelectric bodies to their thermal and

electrical separation should be considered. For this purpose the same problem as in Section 5 of Part 1 of

this paper should be taken into account where we assume now that the thermal insulator located in the

region jx1j6 a of the interface has the properties of the electrical insulation as well. Assuming that the part
of the interface jx1j > a is mechanically frictionless, and in addition it is in a perfect thermal and electrical
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contact, the interface conditions for the perturbed thermal and the associated electromechanical problems

can be presented in the form
for jx1j6 a : q�3 ¼ q0; rðmÞ
13 ðx1; 0Þ ¼ 0; rðmÞ

33 ðx1; 0Þ ¼ 0; DðmÞ
3 ðx1; 0Þ ¼ 0;

for jx1j > a : ½T � ¼ 0; ½q3� ¼ 0; ½u3ðx1; 0Þ� ¼ 0; ½uðx1; 0Þ� ¼ 0;
ð1Þ
rðmÞ
13 ðx1; 0Þ ¼ 0; ½r33ðx1; 0Þ� ¼ 0; ½D3ðx1; 0Þ� ¼ 0: ð2Þ
The designations of this part of the paper mostly coincide with those of Part 1. It is assumed by means of

the conditions (1), (2) that in spite of the compressive load rðmÞ
33 ¼ r (r < 0) at infinity the thermal and the

electrical fluxes initiate an opening of the zone jx1j6 a of a thermoelectrical insulation, i.e. they produce the
appearance of an interface crack in this zone. The possibility of such a formulation is discussed in this
section.

By using the method developed in Section 5 of Part 1 the presentations (44) of Part 1 can be found
Sðx1Þ ¼ Wþðx1Þ 	 W	ðx1Þ; ð3aÞ
Pðx1Þ ¼ QWþðx1Þ 	QW	ðx1Þ 	 eh0þðx1Þ þ eh0	ðx1Þ; ð3bÞ

where S ¼ ½rð1Þ

13 ; ½u03�; ½u0��T , P ¼ ½½u01�; r
ð1Þ
33 ;D

ð1Þ
3 �T and WðzÞ, Q and e are the same vectors as in Part 1 and
h0ðzÞ ¼ iq0
2k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 	 a2

p
: ð4Þ
It follows from the relation (3a) and the Eq. rð1Þ
13 ðx1; 0Þ ¼ 0 for jx1j6 a that the function W1ðzÞ is analytic

in the whole plane and because of the conditions at infinity W1ðzÞ � C1 holds true. The value C1 is an
arbitrary constant which can be chosen to be zero due to an appropriate prescription of the stresses

rðmÞ
11 ¼ r1

xm at infinity.

Introducing the following matrix and vectors:
Q0 ¼
Q22 Q23
Q32 Q33

� �
; e0 ¼

e2
e3

� �
; W0ðzÞ ¼

W2ðzÞ
W3ðzÞ

� �
; ð5Þ
the boundary conditions (12), (13) lead to the following matrix Hilbert problem:
Wþ
0 ðx1Þ þ W	

0 ðx1Þ ¼ Q	1
0 e0½h0þðx1Þ 	 h0	ðxÞ� for jx1j6 a ð6Þ
with the following conditions at infinity:
W0ðzÞjz!1 ¼ 0:5Q	1
0

r
d

� �
: ð7Þ
By use of the formula (4) Eq. (6) can be rewritten in the form
Wþ
0 ðx1Þ þ W	

0 ðx1Þ ¼
iq0
k0

Q	1
0 e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 	 a2

q
for jx1j6 a ð8Þ
and the solution of this equation can be presented according to Muskhelishvili (1977) as follows:
W0ðzÞ ¼ 	 iq0
k0

Q	1
0 e0

1

2pi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 	 a2

p
Z a

	a

t2 	 a2

t 	 z
dt þ a0 þ a1zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 	 a2
p ; ð9Þ
where ai ¼
ai1
ai2

� �
are arbitrary vectorial coefficients. Evaluating the integral in (9) and satisfying the

condition at infinity (7) leads to the following solution of the problem (7), (8)
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W0ðzÞ ¼
1

2
Q	1
0

q0e0
pk0

2azffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 	 a2

p
��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 	 a2

p
ln
z	 a
zþ a

	
þ r

d

� �
zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 	 a2
p

�
: ð10Þ
By use of the formulas (3) the expressions for the stress and the electrical displacement as well as for the

derivatives of the mechanical displacement and electrical potential jumps can be written as follows:
rð1Þ
33 ðx1; 0Þ

Dð1Þ
3 ðx1; 0Þ

( )
¼ q0e0

pk0

2ax1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 	 a2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 	 a2

q
ln
x1 	 a
x1 þ a

!
þ r

d

� �
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 	 a2

p for x1 > a; ð11aÞ

½u03ðx1Þ�
½u0ðx1Þ�

� �
¼ iQ	1

0

q0e0
pk0

 "
	 2ax1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 	 x21
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 	 x21

q
ln
a	 x1
aþ x1

!
	 r

d

� �
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 	 x21

p #
for jx1j < a:

ð11bÞ

The formulas (11) are valid for any values of r, q0 and d, respectively, and it can be clearly seen that all

functions defined by these formulas possess a square root singularity at the points x1 ¼ �a. However, as it
will be shown later the most important situation concerning the investigation of the contact zone model for

a thermo- and an electro-impermeable interface crack is related to the case when the stress rð1Þ
33 ðx1; 0Þ is non-

singular at the points x1 ¼ �a. It follows from the formula (11a) that such a situation can take place if
r ¼ 	 2ae2q0
pk0

ð12Þ
and the expressions for rð1Þ
33 ðx1; 0Þ and ½u03ðx1Þ� attain the following form:
rð1Þ
33 ðx1; 0Þ ¼

e2q0
pk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 	 a2

q
ln
x1 	 a
x1 þ a

for x1 > a; ð13Þ

½u03ðx1Þ� ¼ X12

2aq0
pk0

e3

�
þ d
	

x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 	 x21

p 	 q0
pk0

X11e2ð þ X12e3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 	 x21

q
ln
a	 x1
aþ x1

for jx1j < a; ð14Þ
where X ¼ 	iQ	1
0 . In the formula (13) there is the single term connected with the logarithm, but in the

formula (14) the leading term is connected with the square root singularity. Therefore, rð1Þ
33 ðx1; 0Þ and

½u03ðx1Þ� are negative in the vicinity of the point x1 ¼ a (whereas ½u3ðx1Þ� is positive) if the following in-
equalities are valid:
e2q0 P 0; X12

2aq0
pk0

e3

�
þ d
	
6 0: ð15Þ
It is worth to note that the inequality (151) and Eq. (12) agree with the associated relations for an elec-

trically permeable crack presented in Part 1. However, in (151) we admit the possibility e2q0 ¼ 0 because in

this case q0 ¼ 0, r ¼ 0 hold true, but d can differ from 0 and the bimaterial remains electrically loaded. The

relations (12) and (15) define the values of q0, r and d for which a transition from a perfect thermoelectrical
contact of two piezoelectric bodies to their thermal and electrical separation is possible. In spite of a

particular problem dealt with, nevertheless the inequality (15) can be considered as a general condition

because the relations (13), (14) define the asymptotic behaviour of rð1Þ
33 ðx1; 0Þ and ½u03ðx1Þ�, respectively, at the

transition point x1 ¼ a.
In a particular case when the left side of the inequality (152) becomes equal to zero it follows:
d ¼ 	 2ae3q0
pk0

ð16Þ
and the second term of the formula (14) becomes the leading one. In this case for negative values of

rð1Þ
33 ðx1; 0Þ and ½u03ðx1Þ� in the vicinity of the point x1 ¼ a the following inequalities should be satisfied:
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e2q0 > 0; q0ðX11e2 þ X12e3Þ < 0: ð17Þ
The numerical analysis showed that for the considered bimaterials the signs of e2 and ðX11e2 þ X12e3Þ
appear to be opposite. Therefore, in this particular case even the direction of the heat flux is defined by the

inequality (17)1 which agrees with the associated conclusion for an electrically permeable crack.

Introducing the following stress intensity factors:
k1 ¼ lim
x1!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 	 aÞ

p
rð1Þ
22 ðx1; 0Þ; k4 ¼ lim

x1!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 	 aÞ

p
Dð1Þ
3 ðx1; 0Þ ð18Þ
and using the formulas (11) one obtains
k1 ¼ 2a
ffiffiffiffiffiffi
pa

p
q0e2=ðpk0Þ; kðemÞ

1 ¼ r
ffiffiffiffiffiffi
pa

p
; ð19aÞ

k4 ¼ 2a
ffiffiffiffiffiffi
pa

p
q0e3=ðpk0Þ; kðemÞ

4 ¼ d
ffiffiffiffiffiffi
pa

p
; ð19bÞ
where the superscripts (em) indicate the SIFs related to a pure electromechanical loading. By use of Eqs.

(11) the asymptotic formulas for rð1Þ
33 ðx1; 0Þ and ½u03ðx1Þ� in the vicinity of the point x1 ¼ a can be presented in

the form
rð1Þ
33 ðx1; 0Þjx1!aþ0 ¼

k1 þ kðemÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðx1 	 aÞ
p þ k1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 	 a
2p

r
ln
x1 	 a
2a

; ð20Þ

½u03ðx1Þ�jx1!a	0 ¼ ½X11ðk1 þ kðemÞ
1 Þ þ X12ðk4 þ kðemÞ

4 Þ� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða	 x1Þ

p 	 ðX11k1 þ X12k4Þ
1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a	 x1
2p

r
ln
a	 x1
2a

:

ð21Þ
Applying to the formulas (20) and (21) the same analysis as it was done concerning the formulas (11a) and

(11b) Eqs. (12), (16) and the inequalities (15), (17) can easily be written in terms of the SIFs k1, k4 and k
ðemÞ
1 ,

kðemÞ
4 .

It is worth to note that the matrix Q0 and the vector e needed for applying the obtained formulas can be
presented in terms of the matrix G and the vector h as follows:
Q0 ¼
G33 	 G31G13=G11 G34 	 G31G14=G11
G43 	 G41G13=G11 G44 	 G41G14=G11

� �
; e ¼

	h1=G11
	h1G31=G11 þ h3
	h1G41=G11 þ h4

8<:
9=;: ð22Þ
3. Formulation of the problem and the derivation of the basic relations

The statement of the problem and the initial stage of the solution are rather similar to the case of an

electrically permeable crack and therefore many details in this part will be omitted for conciseness reasons.

Consider an interface crack situated in the region c6 x16 b, x3 ¼ 0 between two different piezoelectric

semi-infinite spaces x3 > 0 and x3 < 0 with thermomechanical properties defined by the matrices Eð1Þ
iJKl, k

ð1Þ
ij ,

bð1Þ
iJ and Eð2Þ

iJKl, kð2Þ
ij , bð2Þ

iJ , respectively. The half-spaces are loaded at infinity with uniform stresses rðmÞ
33 ¼ r,

rðmÞ
13 ¼ s and rðmÞ

11 ¼ r1
xm as well as with uniform electric displacements DðmÞ

3 ¼ d, DðmÞ
1 ¼ D1

xm which satisfy the

continuity conditions at the interface. Besides, a uniform temperature flux q0 in the x3-direction is imposed
at infinity. As in the Part 1 of this paper it is assumed that the crack surfaces are traction-free for
x1 2 ½c; a� ¼ L1 whilst they are in frictionless contact for x1 2 ða; bÞ ¼ L2, and the position of the point
x1 ¼ a is arbitrarily chosen for the time being. The open part of the crack is thermally and electrically
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impermeable, whereas ideal thermoelectric contact takes place on the remaining part of the interface, see

Fig. 2 in Part I. The interface conditions associated with such a formulation for the perturbed thermal state

can be written as follows:
½T � ¼ 0; ½q3� ¼ 0 for x1 2 ð	1;1Þ n ðc; aÞ; ð23aÞ

q�3 ¼ 	q0 for x1 2 L1; ð23bÞ

½Vðx1; 0Þ� ¼ 0; ½tðx1; 0Þ� ¼ 0 for x1 2 L; ð24aÞ

½tð1Þðx1; 0� ¼ 0 for x1 2 L1; ð24bÞ

½u3ðx1; 0Þ� ¼ 0; ½uðx1; 0Þ� ¼ 0; rðmÞ
13 ðx1; 0Þ ¼ 0; ½r33ðx1; 0Þ� ¼ 0;

½D3ðx1; 0Þ� ¼ 0 for x1 2 L2: ð24cÞ

For the considered problem the thermal solution is the same as in Part 1 and it can be presented in the

form
h0ðzÞ ¼ iq0
2k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz	 cÞðz	 aÞ

p
	 ~zz

h i
; ð25Þ
and for the thermoelectromechanical solution the presentations (22)–(26) of Part 1 are valid. The most
important part of this presentation can be rewritten as follows:
½V0ðx1Þ� ¼Wþðx1Þ 	W	ðx1Þ; ð26Þ

tð1Þðx1; 0Þ ¼ GWþðx1Þ 	 GW	ðx1Þ 	 gðx1Þ; ð27Þ

where V ¼ ½u1; u2; u3;u�T , t ¼ ½r31; r32; r33;D3�T , and WðzÞ ¼ ½W1ðzÞ;W2ðzÞ;W3ðzÞ;W4ðzÞ� is a vector-function
analytic in the whole plane with a cut along the crack region ðc; bÞ with gðx1Þ ¼ hh0þðx1Þ 	 �hhh0	ðx1Þ. Fur-
thermore, thermopiezoelectric materials of the symmetry class 6 mm (Parton and Kudryavtsev, 1988) poled

in the direction x3 will be considered, and the attention will be focused upon the plane strain problem with

the bimaterial matrix G and the vector h presented in the form (27) of Part 1.

Further, the transformation of the Eqs. (26), (27) which for a case of electromechanical loading are

written in details in the paper by Herrmann et al. (2001) will be performed. Introducing a one row matrix

S ¼ ½S1; S3; S4� and considering a product Stð1Þðx1; 0Þ the following relations can be obtained using Eqs. (26),
(27)
rð1Þ
33 ðx1; 0Þ þ mj4D

ð1Þ
3 ðx1; 0Þ þ imj1r

ð1Þ
13 ðx1; 0Þ ¼ F þ

j ðx1Þ þ cjF
	
j ðx1Þ 	 g0jðx1Þ; ð28Þ

nj1½u01ðx1Þ� þ inj3½u03ðx1Þ� þ inj4½u0ðx1Þ� ¼ F þ
j ðx1Þ 	 F 	

j ðx1Þ; ð29Þ
where
FjðzÞ ¼ nj1W1ðzÞ þ i½nj3W3ðzÞ þ nj4W4ðzÞ�; ð30Þ

g0jðx1Þ ¼ g3ðx1Þ þ imj1g1ðx1Þ þ mj4g4ðx1Þ, mj4 ¼ Sj4, mj1 ¼ 	iSj1, nj1 ¼ Yj1, nj3 ¼ 	iYj3, nj4 ¼ 	iYj4 and mjl,

njl (l ¼ 1; 3; 4) are real. Moreover Y j ¼ SjG and cj, S
T
j ¼ ½Sj1; Sj3; Sj4� (j ¼ 1; 3; 4) are the eigenvalues and

eigenvectors of the matrix ðcGT þ G
T Þ, respectively. The roots of the equation detðcGT þ G

T Þ ¼ 0 can be

presented in the form
c1 ¼
1þ d
1	 d

; c3 ¼ c	11 ; c4 ¼ 1; ð31Þ
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where
d2 ¼ g214g33 þ g213g44 	 2g14g13g34
g11ðg33g44 	 g234Þ

: ð32Þ
The numerical analysis shows that for one group of piezoelectric bimaterials the inequality
d2 > 0 ð33Þ

holds true, while for another group this inequality is not valid. Thus, attention is paid in the following to
those bimaterials satisfying the inequality (33), and the properties of the coefficients mjl, njl reported above
are related to these materials.

Because of the existing linearity the formulated problem can be considered separately for an electro-

mechanical and a thermal loading, respectively. Taking into account that the problem in question under a

pure electromechanical loading has been already studied in detail by Herrmann et al. (2001), thermal

loading only will be further considered assuming r ¼ s ¼ r1
xxm ¼ 0 and d ¼ D1

xm ¼ 0 for the time being.

Moreover, taking into account that all fields called by the perturbed thermal state disappear for large z, the
conditions at infinity for the functions FjðzÞ by using of Eq. (28) can be written as follows:
FjðzÞ ¼ 0 for z ! 1: ð34Þ

The obtained relations (28), (29) and (34) by considering the properties of the coefficients mjl and njl are

rather convenient for the formulation and the analysis of the problems of linear relationship for an elec-

trically impermeable interface crack with a contact zone.
4. Formulation and solution of the problems of linear relationship

Satisfying the boundary conditions (24b) by means of Eq. (28) gives
F þ
j ðx1Þ þ cjF

	
j ðx1Þ ¼ g0jðx1Þ for x1 2 L1 ðj ¼ 1; 3; 4Þ: ð35Þ
Using the fact that m41 ¼ 0, n41 ¼ 0 and satisfying the first three of the boundary conditions (24c) by means

of Eqs. (28), (29) leads to the following relations:
ImF �
k ðx1Þ ¼

1

1þ ck
Imfg0kðx1Þg for x1 2 L2 ðk ¼ 1; 3Þ; ð36aÞ

F þ
4 ðx1Þ 	 F 	

4 ðx1Þ ¼ 0: ð36bÞ

Taking into account that the problem (35), (36a) for j ¼ k ¼ 3 can be obtained from the same problem for

j ¼ k ¼ 1, in future this problem will be considered for j ¼ 1 and k ¼ 1 only. Using formula (25) leads to

the following form of Eqs. (35), (36a) for j ¼ k ¼ 1
F þ
1 ðx1Þ þ c1F

	
1 ðx1Þ ¼

q0
k0

u1ðx1Þ for x1 2 ðc; aÞ; ð37Þ

ImF �
1 ðx1Þ ¼

q0
k0

u2ðx1Þ for x1 2 ða; bÞ; ð38Þ
where
u1ðx1Þ ¼ im11h1~xx1 þ iðh3 þ m14h4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 	 cÞðx1 	 aÞ

p
; ð39Þ

u2ðx1Þ ¼
m11h1
1þ c1

~xx1
h

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 	 cÞðx1 	 aÞ

p i
ð40Þ
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and ~xx1 ¼ x1 	 c0, c0 ¼ ðcþ aÞ=2. It is worth to remind as well that the values h1, h3, h4 define the vector h
which has been introduced by the formula (27) of Part 1. The relations (37) and (38) represent an inhomo-

geneous combined Dirichlet–Riemann boundary value problem for the sectionally holomorphic function

F1ðzÞ which was considered in detail in Part 1. The Eq. (34) for j ¼ 1 can be used as a condition at infinity
for this problem.

Using Eq. (35) for j ¼ 4 as well as Eqs. (25) and (36b) one arrives at a Hilbert problem for the function

F4ðzÞ which is analytical in the whole plane with a cut along L1 only
F þ
4 ðx1Þ þ F 	

4 ðx1Þ ¼
q0
k0

u3ðx1Þ for x1 2 ðc; aÞ; ð41aÞ
where
u3ðx1Þ ¼ iðh3 þ m44h4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 	 cÞðx1 	 aÞ

p
: ð41bÞ
Eq. (34) for j ¼ 4 can be used as a condition at infinity for this problem.

The inhomogeneous combined Dirichlet–Riemann problem is principally the same as the associated

problem of Part 1. The differences are due to the coefficients of the functions (39), (40) and the meaning of

the function F1ðzÞ. Therefore, the solution of this problem will be presented here only. Thus, the function
F1ðzÞ has the following form:
F1ðzÞ ¼ q0k	10 RX1ðzÞ þ q0k	10 X2ðzÞ½x1ðzÞ þ x2ðzÞ�; ð42Þ
where
R ¼ g1 þ g3
p

Z b

a
ðt 	 cÞ

ffiffiffiffiffiffiffiffiffiffi
t 	 a
b	 t

r
coshu0ðtÞdt þ R0; ð43aÞ
R0 ¼
ðbþ aÞ2

4

"
þ ðb	 aÞ2

8

#
d1 þ

bþ a
2

d2 þ d3; ð43bÞ
x1ðzÞ ¼
1

2pi

Z a

c

u1ðtÞdt
Xþ
2 ðtÞðt 	 zÞ ; ð44aÞ
x2ðzÞ ¼
g1 þ g3

p
Y ðzÞ

Z b

a
ðt 	 cÞ

ffiffiffiffiffiffiffiffiffiffi
t 	 a
b	 t

r
coshu0ðtÞdt þ i½d1z2 þ d2zþ d3 	 Y ðzÞðd1ðzþ c0Þ þ d2Þ�

þ g1
p

Z b

a

~tt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt 	 cÞðt 	 aÞ

p
	 ðt 	 cÞðt 	 aÞ

t 	 z
sinhu0ðtÞdt ð44bÞ
with Y ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz	 aÞðz	 bÞ

p
, d1 ¼ 	ðg1 þ g3Þ cos b, d2 ¼ ðg1 þ g3Þ½b1 sin b þ ðaþ cÞ cos b�,
d3 ¼ ðg1 þ g3Þ
b21
2

��
	 ac

	
cos b þ b1

b	 3a	 2c
4

sin b

�
	 g3

ða	 cÞ2

8
cos b; ð45Þ
where g1 ¼ 	m11h1=ðc1 þ 1Þ, g3 ¼ h3 þ m14h4=ðc1 	 1Þ. All remaining values used in the formulas (42)–(45)
are the same as in Part 1.

The Hilbert problem (41) is principally very similar to the problem (7), (8) considered above. Therefore,
dropping the details of the solution the function F4ðzÞ satisfying the required condition at infinity reads as
following:
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F4ðzÞ ¼
q0
2pk0

ðh3 þ m44h4Þ
ða	 cÞ~zzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz	 cÞðz	 aÞ
p" þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz	 cÞðz	 aÞ

p
ln
z	 a
z	 c

#
: ð46Þ
Using the solutions (42), (46) and formula (28) the normal stress and the electrical displacement at the

interface can be found from the following system:
rð1Þ
33 ðx1; 0Þ þ m14D

ð1Þ
3 ðx1; 0Þ ¼ RefF þ

1 ðx1Þ þ c1F
	
1 ðx1Þ 	 q0k	10 u1ðx1Þg; ð47aÞ

rð1Þ
33 ðx1; 0Þ þ m44D

ð1Þ
3 ðx1; 0Þ ¼ F þ

4 ðx1Þ þ F 	
4 ðx1Þ 	 q0k	10 u3ðx1Þ ð47bÞ
and the shear stress is defined by the formula
rð1Þ
13 ðx1; 0Þ ¼ m	1

11 ImfF þ
1 ðx1Þ þ c1F

	
1 ðx1Þ 	 q0k	10 u1ðx1Þg: ð48Þ
The derivatives of the normal displacement and the electrical potential jumps at the interface can be

found in a similar manner by means of the formulas (29), (42) and (46) from the following system:
n13½u03ðx1Þ� þ n14½u0ðx1Þ� ¼ ImfF þ
1 ðx1Þ 	 F 	

1 ðx1Þg; ð49aÞ

n43½u03ðx1Þ� þ n44½u0ðx1Þ� ¼ F þ
4 ðx1Þ 	 F 	

4 ðx1Þ ð49bÞ

and the derivative of the transversal displacement jump reads as follows:
½u01ðx1Þ� ¼ n	111 fF þ
1 ðx1Þ 	 F 	

1 ðx1Þg: ð50Þ

By means of the Eqs. (47), (50) all required components of the stress-strain state can be found at any point

of the material interface.

Nevertheless, in spite of the fact that the obtained solution is derived on an exact analytical way there are
still remaining integrals in the formulas (43a) and (44). These integrals can be evaluated numerically, but for

a very small relative contact zone length k ¼ ðb	 aÞ=ðb	 cÞ such an evaluation can be connected with some
difficulties. Fortunately for a small k the solution (42)–(44) can be essentially simplified and an asymptotic
expression for F1ðzÞ can be obtained. Presenting x1ðzÞ (44a) in the form
x1ðzÞ ¼
e	ib

2pi

Z a

c

u1ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt 	 cÞðt 	 aÞ

p
t 	 x

ei½b	uðtÞ� dt ð51Þ
and taking into account that for a small k an approximation b 	 uðtÞ � e ln
t 	 a
t 	 c

� �
is valid (Herrmann and

Loboda, 2001) the integral (51) can be approximately evaluated and presented in the form
x1ðzÞ � ~xx1ðzÞ

¼ ie	ibg1

(
	 ~zz
X ðzÞ þ ½d11z2 þ d12zþ d13�

)
þ ie	ibg3

(
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz	 cÞðz	 aÞ

p
X ðzÞ þ ½d21z2 þ d22zþ d23�

)
;

ð52Þ
where X ðzÞ and dij are the same as in the formulas (57), (58) of Part 1. Further by neglecting the integrals in
the formulas (43a) and (44b) the following formula for eFF1ðzÞ � F1ðzÞ can be obtained
eFF1ðzÞ ¼ q0k	10 R0X1ðzÞ þ q0k	10 X2ðzÞ½ ~xx1ðzÞ þ ~xx2ðzÞ�; ð53aÞ

where
~xx2ðzÞ � x2ðzÞ ¼ i½d1z2 þ d2zþ d3 	 Y ðzÞðd1ðzþ c0Þ þ d2Þ�: ð53bÞ

The stresses and the electrical displacement as well as the derivatives of the normal displacement and the

electrical potential jumps at the interface can be found from the Eqs. (47)–(50) in which eFF �
1 ðx1Þ instead of
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F �
1 ðx1Þ should be taken. All formulas in this case appear to be extremely simple and according to the
numerical verification they can be used not only for very small but also for moderate values of k.
5. Behavior of the solution at singular points

As can be seen from the results of the previous section the solution for an electrically impermeable crack

essentially differs from a permeable one, first of all because of the appearance of new components connected

with the function F4ðzÞ. Nevertheless, in this case also the normal stress rð1Þ
33 ðx1; 0Þ remains limited for

x1 ! bþ 0 and the main stress and electrical displacement intensity factors (IFs) can be defined as follows:
k1 ¼ lim
x1!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 	 aÞ

p
rð1Þ
33 ðx1; 0Þ; k2 ¼ lim

x1!bþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 	 bÞ

p
rð1Þ
13 ðx1; 0Þ;

k4 ¼ lim
x1!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 	 aÞ

p
Dð1Þ
3 ðx1; 0Þ:

ð54Þ
Using the exact formulas (47), (48) leads to the following expressions for the IFs:
k1 þ m14k4 ¼
q0
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pða	 cÞ

s
I0; k1 þ m44k4 ¼

q0
k0

ffiffiffiffiffiffiffiffiffiffiffi
a	 c
2p

r
ða	 cÞðh3 þ m44h4Þ; ð55Þ

k2 ¼ 	ð1þ c1Þ
q0

m11k0

ffiffiffiffiffiffi
2p
l

r
R; ð56Þ
where
I0 ¼
Z a

c

ffiffiffiffiffiffiffiffiffiffi
t 	 c
a	 t

r h
	 m11h1~tt sinu�ðtÞ þ ðh3 þ m14h4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt 	 cÞða	 tÞ

p
cosu�ðtÞ

i
dt

	 2g1
ffiffiffiffi
c1

p Z b

a
ðt
"

	 cÞ 	 ~tt

ffiffiffiffiffiffiffiffiffiffi
t 	 c
t 	 a

r #
sinhu0ðtÞdt: ð57Þ
It is obvious that the IFs k1 and k4 can be found from the system (55), and the quantity I0 depends on
integrals which can be obtained by a numerical calculation.

An evaluation of the Eqs. (49), (50) for x1 ! a	 0 and x1 ! b	 0, respectively, leads to the following
asymptotic expressions:
n13½u03ðx1Þ� þ n14½u0ðx1Þ�jx1!a	0 ¼ 	
ffiffiffiffi
a
c1

r
k1 þ m14k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða	 x1Þ

p ; ð58aÞ

n43½u03ðx1Þ� þ n44½u0ðx1Þ�jx1!a	0 ¼ 	 k1 þ m44k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða	 x1Þ

p ; ð58bÞ

½u01ðx1Þ�jx1!b	0 ¼ 	 H22k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða	 x1Þ

p ; ð59Þ
where a ¼ ðc1 þ 1Þ
2
=4c1 and H22 ¼ 	2m11=n11ð1þ c1Þ. The solution of the system (58) gives the following

result:
½u03ðx1; 0Þ�jx1!a	0 ¼ 	 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða	 x1Þ

p ðH11k1 þ H14k4Þ; ð60aÞ
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½u0ðx1; 0Þ�jx1!a	0 ¼ 	 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða	 x1Þ

p ðH41k1 þ H44k4Þ; ð60bÞ
where
H11 ¼ n44
ffiffiffiffiffiffiffiffiffi
a=c1

p�
	 n14

�
=Dn; H14 ¼ m14n44

ffiffiffiffiffiffiffiffiffi
a=c1

p�
	 m44n14

�.
Dn;

H41 ¼ n13
�

	 n43
ffiffiffiffiffiffiffiffiffi
a=c1

p �
=Dn; H44 ¼ m44n13

�
	 m14n43

ffiffiffiffiffiffiffiffiffi
a=c1

p �.
Dn

ð60cÞ
and Dn ¼ n13n44 	 n43n14. It is worth to note that that the asymptotic expressions (59), (60) completely
coincide with the associated expressions for a pure mechanical loading obtained by Herrmann et al. (2001).

Therefore, the formulas for the energy release rates (ERRs) defined for the points x1 ¼ a and x1 ¼ b, res-
pectively, in the just mentioned paper will be the same as well and they read as follows:
Gc
1 ¼ ½H11k21 þ H44k24 þ ðH14 þ H41Þk1k4�=4; ð61aÞ

Gc
2 ¼ H22k22=4: ð61bÞ
Therefore, by existence of a small k the use of the functions eFF �
1 ðx1Þ instead of F �

1 ðx1Þ in the formulas
(47a), (48) gives the following approximate expressions for the IFs:
ffiffiffi

a
p

ðk1 þ m14k4Þ 	 im11k2 �
ffiffiffi
a

p
ð~kk1 þ m14~kk4Þ 	 im11~kk2 ¼

q0
k0

ffiffiffi
a

p
T1ðkÞ; ð62aÞ
where
T1ðkÞ ¼ 	i l
ffiffiffiffiffiffiffiffiffi
plc1

p
2
ffiffiffi
2

p eib½ð1þ 2ieÞ2 g1ð þ g3Þ 	 g3�: ð62bÞ
The assumption of a small k in Eq. (55)2 and by setting ða	 cÞ ¼ l leads by a combination of this equation
with Eq. (62a) to the following expressions for the IFs:
~kk1 ¼ ðm44 	 m14Þ	1
q0
k0

m44Re½T1ðkÞ�f 	 m14T2g; ð63aÞ

~kk2 ¼ 	 q0
ffiffiffi
a

p

k0m11
Im½T1ðkÞ�; ð63bÞ

~kk4 ¼ ðm44 	 m14Þ	1
q0
k0

f 	Re½T1ðkÞ� þ T2g; ð63cÞ
where T2 ¼ l3=2ðh3 þ m44h4Þ=
ffiffiffiffiffiffi
2p

p
. It is worth to note that for small values of k the formulas (59), (60)

defining the behavior of the derivatives of the displacements and the electrical potential jumps at the

singular points of the material interface remain valid by using ~kkl instead of kl (l ¼ 1; 2; 4) in their right-hand
sides.

For a pure electromechanical loading according to Herrmann et al. (2001) the IFs for a small k are
defined by the following relations:
ffiffiffi

a
p

ð~kkðemÞ
1 þ m14~kk

ðemÞ
4 Þ 	 im~kkðemÞ

2 ¼
ffiffiffiffiffi
pl
2

r
eibð1þ 2ieÞðr þ m14d 	 im11sÞ; ð64aÞ

~kkðemÞ
1 þ m14~kk

ðemÞ
4 ¼

ffiffiffiffiffi
pl
2

r
ðr þ m44dÞ ð64bÞ
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and for a combination of electromechanical and thermal loading they must be found as a sum of the

correspondent IFs (63), (64). For a general case of loading and the essential values of k the IFs can be found
from the formulas (55), (56) for a thermal loading and from the associated formulas of the paper by

Herrmann et al. (2001) for an electromechanical loading. However, we pay less attention to this case
because mostly the contact zone length is extremely small and the expressions (63), (64) appear to be the

most important for the analysis of the most real situations.
6. Contact zone models

The solution of the interface crack problem obtained in the previous chapter is mathematically correct

for any position of the point x1 ¼ a. But for an arbitrary value of a this solution is not always physically
admissible, and therefore, the correspondent interface crack model has been called by Herrmann et al.

(2001) an artificial contact zone model (ACZM). The necessary additional conditions required for the

physical correctness of the ACZM coincide with the associated conditions of Part 1, and they read as

follows:
rð1Þ
33 ðx1; 0Þ6 0 for x1 2 L2; ½u3ðx1; 0Þ�P 0 for x1 2 L1: ð65Þ
An analytical analysis and numerical verifications show that these inequalities hold true if a is taken

from the segment ½a1; a2� providing a16 a2, where
a ¼ b	 kl; a1 ¼ b	 k1l; a2 ¼ b	 k2l ð66Þ
and k1 is the maximum root taken from the interval ð0; 1Þ of the equation
k1 þ kðemÞ
1 ¼ 0 ð67Þ
and k2 is the similar root of the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a	 x1

p f½u03ðx1; 0Þ� þ ½u03ðx1; 0Þ�
ðemÞg ¼ 0: ð68Þ
For arbitrary values of k1 and k2 these equations can be analytically formulated by means of the formulas
(55), (60a) and the associated formulas for a pure electromechanical loading (Herrmann et al., 2001),
whereas for small values of k1 and k2 Eqs. (67) and (68) by use of (60a), (63a), (64a), (64b) can be rewritten
into the following relations, respectively
Re eibð1
�

þ 2ieÞ½1þ m14d=r 	 im11k 	 piðm3 þ 2iem4Þ�
 
¼

ffiffiffi
a

p
m14m	1

44 v3; ð69aÞ

Re eibð1
�

þ 2ieÞ½1þ m14d=r 	 im11k 	 piðm3 þ 2iem4Þ�
 
¼ ffiffiffiffi

c1
p

n14n	144 v3; ð69bÞ
where
k ¼ s
r
; m3 ¼ m1 	

4e2

1þ 4e2 m2; m4 ¼ m1 	
2þ 4e2
1þ 4e2 m2;

m1 ¼
	m11h1

#k0d2ð1þ c1Þ
; m2 ¼

h3 þ m14h4
#k0d2ð1	 cÞ ; v3 ¼ 1þ m44

d
r
þ lq0

h3 þ m44h4
prk0

: ð70Þ
The non-dimensional parameter p ¼ ððc1 þ 1Þ=4Þq0#d2l=r has the same meaning as in Part 1, and the

parameters T and d2 are also the same as in Part 1.
It can be seen that the left-hand sides of Eqs. (69) are very similar to the associated equation of the

electrically permeable crack, but the right hand sides are not trivial as in the case of the electrically per-
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meable crack, and moreover, they differ from each other. Recollecting that b ¼ e ln½ð1	
ffiffiffiffiffiffiffiffiffiffiffi
1	 k

p
Þ�

ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1	 k

p
Þ	1� while the other components of Eqs. (69) are independent of k, the exact analytical solutions

of these equations can be presented in the following form:
ki � ~kki ¼ 4 expðgi=eÞ; ð71aÞ
where
gi ¼ ð	1Þn sin	1
v1 þ 2ev2

D

� 	�
	 sin	1 fið Þ

�
þ pn;

v1 ¼ 1þ m14
d
r
þ 2epm4; v2 ¼ km11 þ pm3;

f1 ¼
ffiffiffi
a

p m14
Dm44

v3; f2 ¼
ffiffiffiffi
c1

p n14
Dn44

v3; D2 ¼ ð1þ 4e2Þðv21 þ v22Þ; i ¼ 1; 2

ð71bÞ
and n should be taken to choose the maximum roots of the Eqs. (69) from the interval ð0; 1Þ. The formulas
(71) are appropriate for small values of ki (approximately for ki < 0:01Þ. However, if the values of ~kk1 or ~kk2
are of essential magnitude then the numerical solutions of Eq. (67) or Eq. (68), respectively, should be

found and the precise magnitudes of k1 or k2 have to be calculated.
The situation arising here is not traditionally for the determination of the real contact zone length.

Usually the real position of the point x1 ¼ a is uniquely defined by the inequalities (65), and the contact
zone model (CZM) in the Comninou (1977) sense takes place. However, in the reported case a set of

positions a 2 ½a1; a2� provided (a16 a2) holds true satisfy the inequalities (65). In other terms this set can be
defined as follows:
Xa ¼ ½aP a1 \ a6 a2�: ð72Þ
The meaning of the expression (72) can be explained in the following way. For a certain bimaterial and an

associated loading the first inequality (65) is valid for any position of the point x1 ¼ a satisfying the in-
equality aP a1 and the second inequality (65) is valid for any a6 a2. Therefore, the set Xa is formed as the
intersection of the solutions of the mentioned inequalities.

The appearance of the set Xa instead of a unique solution which usually takes place is connected first of

all with the action of the electrical flux d. Therefore, it is not surprising that the size of the set Xa essentially

depends on the quantity d. As it will be demonstrated later for the thermoelectromechanical case, and it was
already shown by Herrmann et al. (2001) for a pure electromechanical loading, the set Xa is usually not

empty for d¼ 0, but a1 and a2 differ very slightly. The increase of d leads to a decrease of a1 and an increase
of a2, respectively, i.e. their difference increases. On the other hand a decrease of d leads to a decrease of
(a2 	 a1) till to the point when a2 ¼ a1. In this case Xa ¼ a2 ¼ a1 holds true, and the unique solution of (65)
exists. Further decreasing of d gives Xa ¼ ;, and the contact zone model defined by the boundary condi-
tions (24) does not exist.

The most characteristic situation is connected with Xa 6¼ ;, and it is clear that for any of such cases a
unique contact zone defined by a real position of the point x1 ¼ a should exist. In the paper by Herrmann
et al. (2001) a position in question has been defined by means of the theorem of the minimum potential

energy (Sokolnikoff, 1956). Taking into account that for a thermal loading the signs of Hi;j (i; j ¼ 1; 4)
remain the same as for a pure electromechanical loading the conclusion of Herrmann et al. (2001) remains

valid, and in the considered case, and therefore for a thermoelectromechanical loading a real position of the
point x1 ¼ a coincides with a1 provided Xa 6¼ ; holds true.
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7. The classical model

For the sake of completeness the main results for the classical interface crack model (b ¼ a, L2 ¼ ;) will
be presented here. In this case a perturbed thermal state is defined by Eqs. (37), (41) with the condition at
infinity (34) providing the absence of an electromechanical loading. The solution (46) of the problem (34),

(41) remains valid here while the solution of the Hilbert problem (34), (37) obtained in the same way as in

Section 6 of Part 1 can be written in the form
F1ðzÞ ¼
ih1q0

k0ð1þ c1Þ
~zz
n

	 X ðzÞ½d11z2 þ d12zþ d13�
o
þ iðh3 þ m14h4Þq0

k0ð1	 c1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz	 cÞðz	 aÞ

pn
	 X ðzÞ½d21z2 þ d22zþ d23�

o
: ð73Þ
All required characteristics at the interface can be found by means of the Eqs. (46), (73) by using the

formulas (28), (29). Particularly for x1 > a the following presentation is valid:
rð1Þ
33 ðx1; 0Þ þ m14D

ð1Þ
3 ðx1; 0Þ þ im11rð1Þ

13 ðx1; 0Þ

¼ ih1
q0
k0

~xx1
n

	 X ðx1Þ½d11x21 þ d12x1 þ d13�
o
þ iðh3 þ m14h4Þ

q0
k0

1þ c1
1	 c1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 	 cÞðx1 	 aÞ

pn
	 X ðx1Þ½d21x21 þ d22x1 þ d23�

o
	 q0
k0

u1ðx1Þ: ð74Þ
From the Eqs. (47b) and (74) the stresses and the electrical displacement at the interface can be found.

Introducing the IFs by the following formula:
ðK1 þ m14K4Þ 	 im11K2 ¼ ðx1 	 aÞ	ie
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 	 aÞ

p
½rð1Þ
33 ðx1; 0Þ þ m14D

ð1Þ
3 ðx1; 0Þ 	 im11rð1Þ

13 ðx1; 0Þ�x1!aþ0

ð75Þ
and by using Eq. (74) one arrives at the following expression for the IFs:
ðK1 þ m14K4Þ 	 im11K2 ¼ 	iðc1 þ 1Þ
q0
k0

l
ffiffiffiffiffi
pl

p

4
ffiffiffi
2

p e	iw½ð1þ 2ieÞ2ðg1 þ g3Þ 	 g3�: ð76Þ
From the last equation and Eq. (55)2 (by changing k1; k4 for K1, K4, respectively) all IFs can be found. Using
the expressions (73), (76) and Eq. (29) for j ¼ 1 the following asymptotic expression valid for x1 ! a	 0
can be obtained:
n11½u1ðx1; 0Þ� þ ifn13½u3ðx1; 0Þ� þ n14½uðx1; 0Þ�g ¼ 2i

1	 2ie

ffiffiffiffiffi
2a
p

r
½K1 þ m14K4 þ im11K2�ða	 x1Þ0:5	ie: ð77Þ
Combining the last formula with the following expression:
n43½u3ðx1Þ� þ n44½uðx1Þ�jx1!a	0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða	 x1Þ

p

r
ðK1 þ m44K4Þ ð78Þ
obtained by integration of (58b) and changing k1, k4 for K1, K4, respectively, the displacement and electrical
potential jumps at the crack tip can be found.
For the more general case of a thermoelectromechanical loading the solution obtained by Herrmann

et al. (2001) for a pure electromechanical loading should be used in addition to the just reported solution.
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8. Numerical results and discussion

The main attention in this paragraph will be devoted to the contact zone model which has never been

investigated in the past for an electrically impermeable interface crack in a thermopiezoelectric bimaterial.
For the numerical analysis the same bimaterial as in Part 1, i.e. cadmium selenium/glass has been chosen.

For this bimaterial the vector e and the matrix X calculated in the system of physical units SI have the

following shape:
Table

The va

norma

k

	p
0

1

3

10

20

50

100

103

104

106

Table

The va

for the

	p
0

1

3

10

20

50

100

103

104

106
e ¼
	1:38� 105
	1:88� 105
	1:85� 10	7

8<:
9=;; X ¼ 	7:43� 10	11 	0:0223

	0:0181 2:27� 1010
� �

: ð79Þ
Taking into account that e2 is negative, the sign of q0 according to the inequalities (15)1 and (17)1 in the
following examples will be chosen to be negative. The values of d used in the following examples are
controlled by the inequalities (15)2 or (17)2.

In Table 1 the variation of the relative contact zone length k1 and the value k2, respectively, with respect
to the intensity of the temperature flux p for two different values of the shear-normal loading coefficient k
and d ¼ 0 have been demonstrated, and in Table 2 the normalized SIF of the shear stress
1

riation of the relative contact zone length k1 and the value k2, respectively, with respect to p for d ¼ 0 and for different shear-

l loading coefficients k for the bimaterial cadmium–selenium/glass

0 10

	 lnðk1Þ 	 lnðk2Þ 	 lnðk1Þ 	 lnðk2Þ
69.24 69.27 5.149 5.152

68.43 68.45 5.753 5.756

61.94 61.97 6.913 6.918

52.37 52.41 10.53 10.54

48.00 48.04 14.70 14.71

44.50 44.54 22.72 22.74

43.15 43.18 29.18 29.21

41.83 41.86 39.97 40.01

41.69 41.72 41.50 41.53

41.67 41.70 41.67 41.70

2

riation of the normalized SIF ðk20 þ kðemÞ
20 Þ=ðr

ffiffi
l

p
Þ with respect to p for d ¼ 0 and for different shear-normal loading coefficients k

bimaterial cadmium–selenium/glass

k ¼ 0 k ¼ 10

1.23 12.6

1.43 12.8

1.84 13.1

3.40 14.4

5.71 16.3

12.7 22.5

24.5 33.6

2.36� 102 2.44� 102
2.35� 103 2.36� 103
2.35� 105 2.35� 105
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ðk20 þ kðemÞ
20 Þ=ðr

ffiffi
l

p
Þ at the right crack tip for k ¼ k1 has been given. It can be clearly seen that the difference

between k1 and k2 is negligible small for all values of p. Moreover, these values like the values of the shear
stresses differ very slightly from the associated values obtained in Part 1 for an electrically permeable in-

terface crack.
Further, the influence of the electrical flux d upon the fracture mechanical parameters is demonstrated.

Thereby the dimensionless parameter d� ¼ cð1Þ33 d=ðe
ð1Þ
33 rÞ has been introduced for convenience. In Fig. 1 the

variations of the relative contact zone length k1 and the value k2 with respect to the intensity of the electrical
flux d� for k ¼ 0 and two different intensities of the temperature flux are shown. In this graph the loga-

rithmic scale is used because the values of ki are extremely small for the considered parameters k and p. It
can be seen that an increase of d leads to an increase of the differences between k1 and k2 which for the left
points of each pair of lines are equal to zero.

In Fig. 2 the variations of the normalized intensity factor of the electrical displacement ðk4þ
kðemÞ
4 Þ=ðeð1Þ33

ffiffi
l

p
Þ at the point a ¼ a1 (k ¼ k1) for different intensities of the temperature flux are presented.
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Fig. 1. The variation of the values of ki in the logarithmic scale with respect to the intensity of the electrical flux d�.
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Fig. 2. Variation of the electrical intensity factor at the point a with respect to the intensity of the electrical flux d� for different
intensities of the heat flux.
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Fig. 3. Variation of the SIF of the shear stress with respect to the intensity of the electrical flux d� for different intensities of the heat
flux.
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The values of d� designated as d�0 for which k4 þ kðemÞ
4 ¼ 0 correspond to the cases when k1 ¼ k2

(Xa ¼ a1 ¼ a2) and the interface crack closes smoothly at the point x1 ¼ a1. These values d�0 are equal to
)0.423, )1.40, )5.31 and )10.19 for p equal to 0, 10, 50 and 100, respectively. A decrease of the d� value
lower then d�0 leads to negative values of the IF (k4 þ kðemÞ

4 ) and as a consequence to a violation of the second
inequality from (65). In such a case the set Xa defined by formula (72) becomes empty and the contact zone

model associated with the interface conditions (24) does not exist. This situation is similar to the well-

known result concerning the possibility of a transition from a perfect thermal contact of two isotropic

bodies to their separation reported for example by Barber and Comninou (1983) and in such a case a new

thermoelectrical interface condition should be presented. However, it is worth to mention that for materials

considered in this paper and according to Herrmann et al. (2001) the value d�0 is usually less than zero, and
therefore for the most important case, d ¼ 0, the interface conditions (24) are applicable.

In Fig. 3 the variations of the normalized SIF ðk2 þ kðemÞ
2 Þ=ðr

ffiffi
l

p
Þ for k ¼ k1 with respect to the intensity

of the electrical flux d� for k ¼ 0 and the same values of p as in Fig. 2 are presented. It is obvious that the
analysed values essentially depend on p only, but their dependence on d is rather insensible. It should be
mentioned that an essential dependence of the k1-values and (k2 þ kðemÞ

2 )-values on the electrical flux d
appears for very large d�-values only. For example for p ¼ 0, k ¼ 0 and d� ¼ 103, 104, 2� 104 the values of
k1 are equal to 6.38� 10	13, 6.62� 10	4, 0.0177, respectively, and (k2 þ kðemÞ

2 ) varies essentially as well. A

further increasing of the d�-values leads to an increase of k1 too.
9. Conclusion

An electrically impermeable interface crack with a contact zone in an infinite piezoelectrical bimaterial

under the action of a mixed-mode mechanical loading and a thermoelectrical flux has been considered.

Using the matrix-vector representations (26), (27) derived in the first part of this paper the expressions (28),

(29) for the required physical values via special sectionally holomorphic functions are found. An auxiliary

problem concerning a possible transition from a perfect thermoelectrical contact of two piezoelectric bodies

to their thermal and electrical separation has been considered, and the inequalities (15) defining the

admissible values of heat and electrical fluxes have been derived.

The main problem of this part of the paper has been reduced to appropriate inhomogeneous com-
bined Dirichlet–Riemann and Hilbert boundary value problems which have been solved exactly in the form
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(42)–(45) and (46), respectively. The expressions for the stresses, the electrical displacements and the de-

rivatives of the mechanical displacement and electrical potential jumps at the interface for any contact zone

length have been found. Furthermore, the stress and the electrical displacement intensity factors have been

determined in an analytical form which becomes especially simple for small values of the contact zone
length.

The transcendental equations for the determination of the real contact zone length were obtained and

solved for small values of the contact zone length in the form (71). The possibility of a definition of a unique

contact zone length was discussed and the conclusion following from a theorem of the minimum of the

potential energy has been presented by the root of Eq. (67).

The analytical formulas for the main electromechanical characteristics correspondent to the classical

(‘‘open’’ crack) model were given as well.

The numerical results are presented for the same bimaterial cadmium selenium/glass as in Part I, and
provided the absence of an electrical loading they are rather similar to the associated results for an elec-

trically permeable crack. The influence of the electrical flux upon the contact zone length and the associated

stress and electrical intensity factors has been demonstrated for the considered bimaterial as well. It was

particularly found out that at some extent the electrical flux essentially influences the electrical intensity

factor only and its influence upon the contact zone length and the associated stress intensity factor of the

shear stresses becomes sensible for rather large values of this quantity only.
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